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1 Introduction

1.1 Background

Within the past decade, tremendous strides have been made in the field known as "deep
learning." State-of-the-art results are often surpassed within a year or two, and progress in
the field still remains steady. Indeed, "deep neural networks are the basis of the state-of-
the-art results for image recognition, object detection, face recognition, speech recognition,
machine translation, image caption generation, and driverless car technology" [4]. With so
many potentially revolutionary technologies enabled by deep learning, we hope to contribute
to this progress by helping to discover new ways to optimize the performance of artificial
neural networks.
The artificial neural network is so named because each "neuron" delivers binary output;

either a 1 or a 0 (activated or remaining inactive) is the result. Neurons can represent
components of vectors, so that a network can be created with layers of neurons. Each neuron
produces a real number to be used by the next layer, where each of those neurons creates its
own weighted combination of values from the previous layer, adds its own bias, and applies
the activation function. See Figure 1.1 for a visual diagram of a neural network, where w
represents a weight vector and b represents a bias vector. The activation function determines
whether a neuron passes output, and it also introduces non-linearity into the model [5].
Introducing non-linearity is important because linear classifiers may not be appropriate. A
cost function is used to determine the category to classify the input data based on the values
of the components of the final vector [1]. The network is optimized in a process called
"training the network," in which the weights and biases are adjusted to minimize the cost
function.
The intermediate layers between the input layer and the output layer are called "hidden

layers." For simplicity, the diagram in Figure 1.1 only shows one hidden layer. Typically,
many hidden layers are used in deep learning (hence the "deep" part). An optimization
method known as "steepest descent" or "gradient descent" is an iterative process that tries
to converge to a vector that minimizes the cost function. The "gradient" is the vector
of partial derivatives, and the stepsize with each iteration is the "learning rate" [1]. The
"stochastic gradient" method uses the gradient of a random training point instead of the
mean of all gradients in order to save computational resources. A small sample mean could
also be used to preserve accuracy.
Training requires the computation of partial derivatives with respect to each weight and

bias for each neuron. The partial derivative of the cost at each neuron within each layer is
known as the "error," although it is difficult to assign errors in hidden layers to errors in
the final output [3]. In order to minimize the final cost, each partial derivative should be as
close to zero as possible.
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Figure 1.1: Depiction of a Neural Network

1.2 Objectives and Methods

Dr. Banuelos and his previous team of student researchers have created two new activation
functions, and we are now testing the efficiency and accuracy of these against more traditional
activation functions. Activation functions are generally overlooked, but they "strongly affect
the network’s speed of convergence, capacity, and overall performance" [5]. In the future,
we may also consider the performance of neural networks that use hyperactivations, which
have shown great promise.
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2 Methods and Results

We ran our experiments on the CIFAR-10 dataset. The CIFAR-10 collection contains thou-
sands of images, with 10 distinct categories: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck [2]. Each image is 32 by 32 pixels, which means each data point
consists of 32 * 32 * 3 = 3,072 values [2]. The training set consists of 50,000 images and the
validation set consists of 10,000 images (1,000 images for each category) [2]. An example
of an image from each of the ten categories of CIFAR-10 is included below as Figures 2.1 -
2.10.

Figure 2.1: An example image of an airplane from CIFAR-10

Figure 2.2: An example image of an automobile from CIFAR-10

Figure 2.3: An example image of a bird from CIFAR-10

Figure 2.4: An example image of a cat from CIFAR-10
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Figure 2.5: An example image of a deer from CIFAR-10

Figure 2.6: An example image of a dog from CIFAR-10

Figure 2.7: An example image of a frog from CIFAR-10

Figure 2.8: An example image of a horse from CIFAR-10

Figure 2.9: An example image of a ship from CIFAR-10
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Figure 2.10: An example image of a truck from CIFAR-10

The activation function most popularly used in deep learning is ReLU (Rectified Linear
Unit). Other activation functions are also commonly used, such as Swish and Tanh, but most
researchers typically don’t give much consideration to the choice of activation function. Last
year, Dr. Banuelos and his team of research students created two new activation functions:
TAct and mTAct. The TAct function is designed to be flexible, so it can emulate ReLU,
Swish, or Tanh, depending on what seems to be the best for the model. The mTAct function
is very similar, with just a slight modification in its parameter definitions.
All experiments were run on TLALOC (Training Learning Algorithms Landscape for Op-

timization and Computation), the server located in Dr. Banuelos’ office. TLALOC has a
much higher computational capacity than any personal computer, and it has dedicated GPU
processing that could run these models uninterrupted. It often took anywhere from 1-4 hours
to do a given run, so running all the experiments so far has probably taken several hundred
hours.

2.1 Baseline Tests on fastai Models

There were a total of 12 runs for our baseline tests (four models each run at 25, 50, and
100 epochs). The four pre-trained models from the fastai library are xresnet18, xresnet34,
xresnet50, and wrn22. The Python script to run each model was copied directly from the
fastai library. Figure 2.11 depicts the accuracy of all four models over 25 epochs, Figure 2.12
depicts the accuracy of all four models over 50 epochs, and Figure 2.13 depicts the accuracy
of all four models over 100 epochs. The accuracy at each epoch is an average value taken
over five runs, and the windows on each graph depict the standard deviation at each epoch.
All of the graphs in this paper were created using the Chartify library.
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Figure 2.11: Baseline Plot across 25 epochs

Figure 2.12: Baseline Plot across 50 epochs
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Figure 2.13: Baseline Plot across 100 epochs

Of the fastai library models, wrn22 clearly performed the best on all three epoch levels,
while xresnet50 consistently lagged behind the rest. This disparity might be due to the
“width” of the models [1]. This would explain why wrn22 achieved the highest accuracy
(because each layer contains more neurons), whereas xresnet50 might be suffering from
overfitting because of the extraneous layers (increased “depth” over “width”).
The baseline results using the fastai models allowed us to test TLALOC’s capabilities

against those of the fastai team. However, all of those models were run with the ReLU
activation function, so those tests are not very useful for the purposes of this project until
we run the same models with different activation functions.

2.2 Testing on More Complex Models

Diganta Misra, whose paper has been cited in this project, created an activatation func-
tion called Mish, which is a modified version of Swish. Misra ran many experiments with
many activation functions on many datasets and posted these results on his GitHub page
(https://github.com/digantamisra98/Mish/tree/master/Notebooks). We borrowed Misra’s
code for three models: DenseNet-121, SE-Net 18, and MobileNet v2. We then ran five acti-
vation functions at three times each: ReLU, Swish, Mish, TAct, and mTAct. Our results for
ReLU, Swish, and Mish closely match those of Misra on the three models with the CIFAR-10
dataset. This would indicate that our results are reliable.

9



Table 2.1: Results for DenseNet-121

Activation Test loss Test accuracy Test top-3 accuracy

Mish 0.498909 0.904964 0.985924
ReLU 0.453389 0.910733 0.987507
Swish 0.474808 0.908788 0.986452
TAct 0.485258 0.907700 0.986880
mTAct 0.475675 0.908986 0.987276

Table 2.2: Results for SE-Net 18

Activation Test loss Test accuracy Test top-3 accuracy

Mish 0.500509 0.904964 0.985858
ReLU 0.502865 0.901833 0.984375
Swish 0.496490 0.905558 0.985727
TAct 0.613268 0.889076 0.980914
mTAct 0.677317 0.880142 0.978672

Table 2.3: Results for MobileNet v2

Activation Test loss Test accuracy Test top-3 accuracy

Mish 0.542931 0.863199 0.974486
ReLU 0.527468 0.859935 0.975277
Swish 0.548409 0.866627 0.975541
TAct 0.515840 0.867880 0.976200
mTAct 0.534020 0.852420 0.971585

None of the activation functions dominated over all models. ReLU was best for DenseNet-
121, Swish and Mish were best for SE-Net 18, and TAct was best for MobileNet v2. Nearly
all activation functions performed comparably across all models, with the exception of TAct
and mTAct on SE-Net 18. The relatively poor performance of these two activation functions
on SE-Net 18 may be due to a slight incompatibility in coding architecture that was not
present on the other two models.
Next, we tested DenseNet-121, SE Net-18, and MobileNet v2 with different learning rates.

Our original tests of these three models used the learning rate of 0.0010, so we tried four
more learning rates that differed by orders of magnitude: 0.0001, 0.0100, 0.1000, and 1.0000.
We wanted to see if any particular learning rate was best suited for each of the models,
and we were interested to discover whether any of the activation functions combined with a
particular learning rate to yield the best accuracy performances.
After running each of the three models on each of the five activation functions on each of

the four new learning rate rates three times each, we found that our original learning rate

10



of 0.0010 was optimal for nearly all activation functions on DenseNet-121 and SE Net-18.
Occasionally, the learning rates closest to 0.0010, namely 0.0001 and 0.0100, were best for
some activation functions in these two models. The highest learning rate tested (1.0000)
almost always yielded the worst results, which is in accordance with Misra’s claim that
these three complex models typically perform better with small learning rates [3]. Although
the original learning rate produced consistently high accuracy values among the activation
functions in MobileNet v2, the learning rate of 0.0100 seemed to produce slightly better
results, making it the best learning rate for that model. But it is quite surprising to see that
the next learning rate above 0.0100 (namely, 0.1000) yields such dramatically low results, as
seen in Tables 2.6 and 2.7. The following six tables (Tables 2.4 - 2.9) summarize the results
for our tests on varying learning rates for each of the three models on test top-1 accuracy and
test top-3 accuracy. For CIFAR-10 data, test top-1 accuracy refers to the accuracy of the
top prediction (as a percentage) being correct in assigning an input image from the testing
set to the correct category, while test top-3 accuracy refers to the accuracy for any of the top
3 predictions (in percentages) being the correct image category for a test image. In these
tables, the best result in each column (for an activation function) is italicized, while the
best result in each row (for a learning rate) is in bold. From these results, it seems that the
learning rate plays a more significant role than the activation function, since no activation
function is capable of compensating for a deficient learning rate.

Table 2.4: Results for DenseNet-121 Learning Rate Tests (Test Top-1 Accuracy)

Learning Rate Mish ReLU Swish TAct mTAct

0.0001 0.903349 0.900481 0.904437 0.904635 0.906909
0.0010 0.904964 0.910733 0.908788 0.907700 0.908986
0.0100 0.882021 0.877637 0.882351 0.885153 0.877703
0.1000 0.862902 0.885614 0.867220 0.874571 0.885450
1.0000 0.250494 0.099848 0.311940 0.100046 0.100178

Table 2.5: Results for DenseNet-121 Learning Rate Tests (Test Top-3 Accuracy)

Learning Rate Mish ReLU Swish TAct mTAct

0.0001 0.986056 0.984342 0.985265 0.985825 0.985661
0.0010 0.985924 0.987507 0.986452 0.986880 0.987276
0.0100 0.979397 0.977749 0.980749 0.981145 0.980024
0.1000 0.974585 0.980353 0.977024 0.978277 0.981309
1.0000 0.499637 0.299941 0.507384 0.299215 0.299875
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Table 2.6: Results for MobileNet v2 Learning Rate Tests (Test Top-1 Accuracy)

Learning Rate Mish ReLU Swish TAct mTAct

0.0001 0.738133 0.718585 0.725541 0.770866 0.776174
0.0010 0.863199 0.859935 0.866627 0.867880 0.852420
0.0100 0.880505 0.862342 0.879747 0.866858 0.862540
0.1000 0.178995 0.157404 0.260252 0.122594 0.098233
1.0000 0.101925 0.099585 0.099288 0.099914 0.099255

Table 2.7: Results for MobileNet v2 Learning Rate Tests (Test Top-3 Accuracy)

Learning Rate Mish ReLU Swish TAct mTAct

0.0001 0.929688 0.923259 0.923919 0.943730 0.947191
0.0010 0.974486 0.975277 0.975541 0.976200 0.971585
0.0100 0.979727 0.976431 0.978540 0.977255 0.974321
0.1000 0.415084 0.440961 0.476266 0.324862 0.222805
1.0000 0.299974 0.300831 0.298919 0.298820 0.297139

Table 2.8: Results for SE Net-18 Learning Rate Tests (Test Top-1 Accuracy)

Learning Rate Mish ReLU Swish TAct mTAct

0.0001 0.882747 0.874637 0.881659 0.876846 0.874604
0.0010 0.904964 0.901833 0.905558 0.889076 0.880142
0.0100 0.883801 0.886142 0.887889 0.879219 0.878165
0.1000 0.861650 0.868473 0.829608 0.832311 0.710311
1.0000 0.099585 0.100508 0.099420 0.098563 0.157470

Table 2.9: Results for SE Net-18 Learning Rate Tests (Test Top-3 Accuracy)

Learning Rate Mish ReLU Swish TAct mTAct

0.0001 0.980320 0.977683 0.978573 0.977453 0.976925
0.0010 0.985858 0.984375 0.985727 0.980914 0.978672
0.0100 0.980353 0.981705 0.979694 0.978771 0.979661
0.1000 0.972211 0.973662 0.964662 0.963739 0.867979
1.0000 0.299875 0.301325 0.300666 0.310160 0.427314

The charts for the two best learning rates on each of the three models averaged over three
runs each are included below as Figures 2.14 - 2.19.
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Figure 2.14: DenseNet-121 with a Learning Rate of 0.0100

Figure 2.15: DenseNet-121 with a Learning Rate of 0.1000
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Figure 2.16: MobileNet v2 with a Learning Rate of 0.0001

Figure 2.17: MobileNet v2 with a Learning Rate of 0.0010
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Figure 2.18: SE Net-18 with a Learning Rate of 0.0001

Figure 2.19: SE Net-18 with a Learning Rate of 0.0010

2.3 Simple ResNet-18 Model

We achieved similar results among all five activation functions with the three complex models
(DenseNet-121, SE-Net 18, and MobileNet v2). At this point, we decided to revise our
hypothesis: perhaps TAct and mTAct perform better on shallower, simpler models. Such
models would have fewer layers and fewer parameters, which might convey an advantage
to TAct and mTAct, which are more flexible in nature than the other activation functions.
We constructed a simple ResNet-18 model using code from the PyTorch website and then
modified it to accommodate our activation functions.
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Our hypothesis turned out to be correct in the case of using a triangular learning rate,
as shown in Figure 2.20. None of the graphs of the Simple ResNet-18 model results include
standard deviation windows to improve visibility.

Figure 2.20: Simple ResNet 18 Plot with 30 epochs and Triangular Learning Rate, where
mTAct and TAct perform the best (average of 3 runs)

We tested two versions of the simple model: one with a triangular learning rate and one
with a fixed learning rate. The triangular learning rate is a type of cyclical learning rate
policy in which a model is run for a few epochs with a learning rate varying linearly between
a minimum value and a maximum value in order to find the optimal value for the actual
run [4]. A fixed learning rate policy, on the other hand, simply uses a constant value for
the duration of the run. While mTAct and TAct performed the best, respectively, on the
Simple ResNet18 model with a triangular learning rate policy, TAct surpassed mTAct as
best performer on a fixed learning rate policy (Figure 2.21).
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Figure 2.21: Simple ResNet 18 Plot with 30 epochs and Fixed Learning Rate (average of 3
runs)

These results were promising for TAct and mTAct, because our revised hypothesis seemed
to be correct.

2.4 Testing with Noisy Datasets

We next turned our attention to noisy datasets. Manuel Chacón, a collaborator on this
research project, developed four corrupted versions of the CIFAR-10 dataset. The four
noisy datasets are psi8, psi16, psi32, and psi64. The psi coefficient indicates the degree of
noise/corruption introduced to the dataset, with psi8 possessing the most amount of noise
in its images and psi64 possessing the least amount. Examples of the corrupted images are
included below as Figures 2.22 - 2.29.

Figure 2.22: A corrupted image depicting an airplane, from the psi8 dataset
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Figure 2.23: A corrupted image depicting a horse, from the psi8 dataset

Figure 2.24: A corrupted image depicting a car, from the psi16 dataset

Figure 2.25: A corrupted image depicting a cat, from the psi16 dataset

Figure 2.26: A corrupted image depicting a dog, from the psi32 dataset

Figure 2.27: A corrupted image depicting a ship, from the psi32 dataset
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Figure 2.28: A corrupted image depicting a deer, from the psi64 dataset

Figure 2.29: A corrupted image depicting a truck, from the psi64 dataset

First, we tested our Simple ResNet-18 model with the noisy datasets. There were two
learning policies (Triangular Learning Rate and Fixed Learning Rate) and four noisy datasets
(psi8, psi16, psi32, and psi64) for each of the five activation functions, which were averaged
over three runs with 30 epochs per run. The graphs are displayed in Figures 2.30 - 2.37.

Figure 2.30: Simple ResNet-18 on the psi8 dataset with Triangular Learning Rate

19



Figure 2.31: Simple ResNet-18 on the psi16 dataset with Triangular Learning Rate

Figure 2.32: Simple ResNet-18 on the psi32 dataset with Triangular Learning Rate
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Figure 2.33: Simple ResNet-18 on the psi64 dataset with Triangular Learning Rate

Figure 2.34: Simple ResNet-18 on the psi8 dataset with Fixed Learning Rate

21



Figure 2.35: Simple ResNet-18 on the psi16 dataset with Fixed Learning Rate

Figure 2.36: Simple ResNet-18 on the psi32 dataset with Fixed Learning Rate
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Figure 2.37: Simple ResNet-18 on the psi64 dataset with Fixed Learning Rate

It seems that there is no consistent pattern in the behavior of activation functions with
respect to degree of noise corruption or learning rate policy. Thus, none of the activation
functions prevailed over the others on the simple architecture with the corrupted images.
We then decided to test the noisy data on the complex models that we had previously

studied: DenseNet-121, MobileNet v2, and SE Net-18. All five activation functions were
tested on each of these three models with each of the four noisy datasets. The results of
these tests (averaged over 5 runs per activation function per model per dataset) are included
in the 12 graphs below (Figures 2.38 - 2.49).

Figure 2.38: DenseNet-121 on the psi8 dataset
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Figure 2.39: DenseNet-121 on the psi16 dataset

Figure 2.40: DenseNet-121 on the psi32 dataset

24



Figure 2.41: DenseNet-121 on the psi64 dataset

Figure 2.42: MobileNet v2 on the psi8 dataset
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Figure 2.43: MobileNet v2 on the psi16 dataset

Figure 2.44: MobileNet v2 on the psi32 dataset
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Figure 2.45: MobileNet v2 on the psi64 dataset

Figure 2.46: SE Net-18 on the psi8 dataset
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Figure 2.47: SE Net-18 on the psi16 dataset

Figure 2.48: SE Net-18 on the psi32 dataset
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Figure 2.49: SE Net-18 on the psi64 dataset

Yet again, there was no clear pattern in the relationships between activation function,
model complexity, and degree of image corruption.
Next, we tested seven more runs of each of the two learning rate policies (TLR and FLR)

on each of the four noisy datasets (psi8, psi16, psi32, and psi64) on the Simple ResNet-18
Model. Our previous three runs had been sanitized, since "null runs" were discarded. A null
run occurred when the error reached a value that was far too high at some point during the
run, which led to the test accuracy to drop to 0.100000 for the rest of the epochs in that run.
The cause was unknown, but we suspected that some activation functions might be more
prone to producing null runs than others on the simple model. The complex models probably
had some code to protect against null runs, because only the simple model ever produced
null runs. With a total of 10 runs averaged on each of the two learning rate policies on
each of the four noisy datasets, we wanted to produce graphs to compare with the santized
three-run versions to see how frequently null runs occurred for a given activation function.
These graphs with the 10-run averages are still being finalized.
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3 Discussion

We do not have a definitive conclusion yet, since we still need to run many more experiments
with different variations. Given the data we currently have, it would be scientifically irre-
sponsible to to comment on the effect of activation functions on the performance of artificial
neural networks. Hopefully, we will have sufficient results in the next few months. We still
have hope for TAct and mTAct, since their unique formulations will at least provide some
insight into the ideal properties of activation functions, even if these two particular activation
functions do not consistently outperform other activation functions for a specific task. As
of now, TAct and mTAct seem to be on par with the other activation functions tested in
terms of performance, but these two activation functions may be best suited for a particular
task that we have not tested yet. Given that TAct and mTAct did not outperform the other
activation functions using the simple model on the noisy datasets, we are reluctant to claim
that our revised hypothesis on TAct and mTAct with simple models is correct, even though
TAct and mTAc did indeed perform the best on the simple model using the unmodified
version of the CIFAR-10 dataset.
We are currently investigating the performances of activation functions with the other

kinds of models running on the noisy datasets. Without any conclusive results, we must now
consider new pathways of investigation for this research project. For example, we may look
at hyperactivations, which are activation functions that are constructed during the training
of the model.
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